книга DipMaster-Shop.RU
поиск
карта
почта
Главная На заказ Готовые работы Способы оплаты Партнерство Контакты F.A.Q. Поиск
Решить задачу, используя формулу Бернулли 78665 ( Контрольная работа, 6 стр. )
Решить задачу, используя формулу Бернулли 4653ав ( Контрольная работа, 6 стр. )
Решить систему линейных уравнений кц24222 ( Контрольная работа, 15 стр. )
Решить систему линейных уравнений вку442 ( Контрольная работа, 11 стр. )
Решить систему линейных уравнений методом Крамера ( Контрольная работа, 14 стр. )
Решить систему линейных уравнений: ( Контрольная работа, 7 стр. )
Решить систему линейных уравнений ке342131 ( Контрольная работа, 7 стр. )
Решить систему линейных уравнений методом Крамера и матричным методом ен45633 ( Контрольная работа, 5 стр. )
Решить систему линейных уравнений 24322 ( Контрольная работа, 6 стр. )
Решить систему методом Гаусса ( Контрольная работа, 4 стр. )
Решить систему тремя способами: методом Крамера, методом Гаусса и с помощью обратной матрицы ( Контрольная работа, 23 стр. )
Решить системы линейных уравнений ну53522 ( Контрольная работа, 6 стр. )
Решить СПУ тремя способами (методом Крамера, методом Энгруана-Гаусса, с помощью обратной матрицы). Сравнить полученные результаты. а) метод Крамера ( Контрольная работа, 3 стр. )
Розы - кривые Гвидо Гранди ( Курсовая работа, 52 стр. )
Розы кривые Гвидо Гранди ( Курсовая работа, 50 стр. )
Русская Правда" и ее влияние на развитие математики на Руси1 ( Реферат, 22 стр. )
С Б О Р Н И К З А Д А Ч П О Г Е О М Е Т Р И И И Т О П О Л О Г И И ( Контрольная работа, 30 стр. )
С целью размещения рекламы, опрошено 470 телезрителей, из которых данную передачу смотрят 220 человек ( Контрольная работа, 3 стр. )
Секретный замок содержит 4 диска с цифрами от 0 до 9. Какова вероятность того, что случайно набранная комбинация откроет замок ( Контрольная работа, 3 стр. )
Семиотика как наука о знаках_5462 ( Реферат, 19 стр. )
Сечение плоскостью ( Контрольная работа, 13 стр. )
Симплекс-метод_задачи ( Контрольная работа, 7 стр. )
Система линейных уравнений ( Контрольная работа, 11 стр. )
Система методом Гаусса ( Контрольная работа, 10 стр. )
Система упражнений по отработке умения решать системы уравнений ( Курсовая работа, 47 стр. )

Введение

Глава I. Криволинейные и поверхностные интегралы

§1. Криволинейный интеграл I рода

§2. Криволинейный интеграл II рода

§3. Поверхностный интеграл I рода

§4. Поверхностный интеграл II рода

§5. Формулы Грина, Остроградского-Гаусса, Стокса

Глава II. Теория поля

§1. Основные понятия теории поля

§2. Скалярное поле

Производная скалярного поля по направлению

Градиент скалярного поля

§3. Векторное поле и его циркуляция

Поток векторного поля

Дивергенция векторного поля. Формула Остроградского-Гаусса в векторной форме

Вихревой вектор поля. Формула Стокса в векторной форме

§4. Специальные векторные поля

§5. Оператор Лапласа. Гармонические функции

Глава III. Практическая часть.

Заключение

Список литературы

Для описания физической реальности математикам стало не доставать основных типов чисел (целые, рациональные, иррациональные, комплексные, …). Чтобы иметь возможность для некоторых величин указывать не только их числовое значение, но и направление, было введено понятие вектора как направленного отрезка. Следовательно, вектор - абстракция математических объектов, характеризующихся модулем и направлением. Примерами физических векторных величин являются перемещение, скорость, ускорение, напряженность электрического ил магнитного поля.

Сам термин "вектор" (от лат. vector - несущий) впервые появился у Гамильтона в 1845г. В работах по построению числовых систем, обобщающих комплексные числа. Гамильтону принадлежат термины "скаляр", "скалярное произведение", "векторное произведение".

После введения понятия вектора были более детально разработаны правила операций над векторами, что привело к появлению сначала векторной алгебры, а затем и векторного анализа. Векторная алгебра изучает простейшие операции над векторами. Она стала своеобразным языком аналитической геометрии. Векторный анализ изучает векторные и скалярные поля. Основными понятиями векторного анализа являются "градиент", "дивергенция", "ротор" ("вихрь") и "лапласиан".

Многие результаты векторного исчисления получены Германом Грассманом и английским математиком Уильямом Клиффордом. Окончательный вид векторная алгебра и векторный анализ приобрели в трудах американского физика и математика Джозайн Уилларда Гиббса, который в 1901г. Опубликовал обширный учебник по векторному анализу.

Следует отметить, что в ясно очерченном виде векторная алгебра появилась примерно на 30 лет позже первых работ по теории кватернионов (это числа, каждое из которых определяет величину и направление в пространстве). Гиббс показал связь векторной алгебры с теорией кватернионов и алгеброй Грассмана. Он был большим энтузиастом распространения векторного исчисления в различных областях точных наук.

Понятие вектора может быть введено аксиоматически, тогда вектор будет пониматься как элемент векторного пространства. Развитием понятия "вектор" можно считать понятие "тензор".

Тензорное исчисление - раздел математики, изучающий тензоры и тензорные поля. Тензорное исчисление разделяется на тензорную алгебру, входящую в качестве основной части в полилинейную алгебру, и тензорный анализ, изучающий дифференциальные операторы на алгебре тензорных полей. Тензорное исчисление является важной составной частью аппарата дифференциальной геометрии. В этой связи оно впервые систематически было развито Дж.Риччи и Т.Леви-Чивитой, его часто называли "исчислением Риччи".

Термин "тензор" еще с середины XIXв. употребляется в механике при описании упругих деформаций тел. С начала XX в. аппарат тензорного исчисления систематически используется в релятивистской физике.

Изучение векторного анализа сводится к изучению дифференциального и интегрального исчисления, включающего криволинейные и поверхностные интегралы, их основные свойства и понятия; а также теорию поля, которая является обобщением основных понятий векторного анализа.

Теория поля - крупный раздел физики, механики, математики, в котором изучаются скалярные векторные и тензорные поля. Теория поля устанавливает и исследует связи между величинами, характеризующими поле.

Следовательно, мы можем выделить основную цель нашей работы: рассмотрение важнейших операций векторного анализа - градиента, ротора, циркуляции и дивергенции, а также наиболее важных теорем векторного анализа - формулы Грина, теоремы Стокса, формулы Остроградского-Гаусса.

1. Березанский Ю. М., Левитан Б. М.. Функциональный анализ/ http://www.cultinfo.ru/fulltext/1/001/008/117/905.htm

2. Бронштейн И.Н., Семендяев К.А. Справочник по математике для и инженеров и учащихся втузов. - М.: Наука, 1964. - 608 с.

3. Выгодский М.Я. Справочник по высшей математике. - М.: Наука, 1966. - 872 с.

4. Квальвассер В.И., Фридман М.И. Теория поля. Теория функций комплексного переменного. Операционное исчисление. - М.: Высшая школа, 1967. - 240 с.

5. Кузнецов Д.С. Специальные функции. - М.: Высшая школа, 1965. - 424 с.

6. Лекции по математическому анализу: Учеб. для вузов/ Г.И. Архипов, В.А. Садовничий, В.Н. Чубариков; Под ред. В.А. Садовничего. - 4-е изд., испр. - М.: Дрофа, 2004. - 640 с.

7. Ляшко И.И., Боярчук А.К., Гай Я.Г., Головач Г.П. Справочное пособие поп высшей математике. Т.3. Ч.2: Математический анализ: кратные и криволинейные интегралы. Изд. 6-е. - М.: КомКнига, 2007.

8. Магазинников Л.И. Функции комплексного переменного. Ряды. Интегральные преобразования. Учебное пособие. - Томск: Томский межвузовский центр дистанционного образования, 1999. - 205 с.

9. Панов В.Ф. Математика древняя и юная. - 2-е изд. - М.: Изд-во МГТУ им. Н.Э.Баумана, 2006.

10. Письменный Д.Т. - Ч.2 - 4-е изд. - М.: Айрис-пресс, 2006.

11. Фихтенгольц Г.М. Основы математического анализа. Т. 2. - М.: Государственное издательство технико-теоретической литературы, 1956. - 464 с.

12. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Т. 2. - М.: Наука, 1969. - 800 с.

13. www.wikipedia.ru

Примечаний нет.

2000-2024 © Copyright «DipMaster-Shop.ru»