книга DipMaster-Shop.RU
поиск
карта
почта
Главная На заказ Готовые работы Способы оплаты Партнерство Контакты F.A.Q. Поиск
Гравитационное поле и его свойства 789065 ( Контрольная работа, 28 стр. )
Гравитационные и электромагнитные поля и их свойства 2005-29 ( Курсовая работа, 29 стр. )
Гравитационные и электромагнитные поля и их свойства ( Контрольная работа, 29 стр. )
Давление над жидкостью Ж (керосин) в левой части резервуара определяется показателем манометра Рм = 0,07 МПа (абс); давление воздуха в правой части - показателем мановаккуумметра Рв = 0,02 МПа (абс). еу52 ( Контрольная работа, 6 стр. )
Давление над жидкостью Ж (керосин) в левой части резервуара определяется показателем манометра Рм = 0,07 МПа (абс); давление воздуха в правой части - показателем мановаккуумметра Рв = 0,02 МПа (абс з==рцкфф ( Контрольная работа, 8 стр. )
Давление твердых тел, жидкостей и газов ( Дипломная работа, 109 стр. )
Два протона отталкиваются с силой ( Контрольная работа, 1 стр. )
Двойное лучепреломление электромагнитных волн ( Контрольная работа, 20 стр. )
Демонстрационный учебный физический эксперимент при изучении темы: "механические колебания и волны" для профильного класса. ( Дипломная работа, 95 стр. )
Дифференцированный подход в обучении физики ( Контрольная работа, 27 стр. )
ДИФФУЗИОННЫЙ СО2 ЛАЗЕР С ДИФФУЗИОННЫМ ОХЛАЖДЕНИЕМ ( Контрольная работа, 5 стр. )
Для улучшения качества оптических приборов используется просветлённая оптика ( Реферат, 23 стр. )
доработка пешкичев е352342 ( Контрольная работа, 2 стр. )
Задание Д-1 ( Контрольная работа, 5 стр. )
Задачи по физике ( Контрольная работа, 18 стр. )
Задачи по физике ( Контрольная работа, 11 стр. )
Задачи по физике 2005-11 ( Контрольная работа, 11 стр. )
Закон сохранения механической энергии. Его обусловленность однородностью ( Контрольная работа, 10 стр. )
Законы распространения света к234133 ( Контрольная работа, 8 стр. )
Замкнутый резервуар разделен на две части плоской перегородкой, имеющей квадратное отверстие со стороной а=400 мм, закрытое крышкой е3521йу ( Контрольная работа, 7 стр. )
Звуковое поле и его свойства ( Контрольная работа, 12 стр. )
Идеальный газ ( Дипломная работа, 123 стр. )
Идеальный газ. Уравнение состояния идеального газа. 4433 ( Контрольная работа, 10 стр. )
Идеи академика В. И. Вернадского ( Реферат, 16 стр. )
Измерение углового распределения космических лучей ( Контрольная работа, 4 стр. )

Содержание.

1. Постановка задачи 3

2. Элементы теории дислокаций 6

3. Численные методы 13

Метод конечных разностей 19

4. Реализация модели 21

5. Программная реализация 23

6. Анализ результатов 28

7. Литература 29

Взаимодействие структурных дефектов и полей различной природы относится к фундаментальным проблемам современной физики. Темой данной работы является исследование взаимодействия поля постоянной силы и дефектов кристаллической структуры методами математического моделирования с использованием неявной схемы Эйлера для конечных разностей.

Поскольку под действием ультразвука материал может как упрочняться, так и разупрочняться, важно проследить за физическими эффектами, приводящими к таким изменениям. Современное состояние теории не позволяет однозначно предсказать, что именно произойдет в процессе воздействия ультразвука: упрочнение или разупрочнение кристалла. Поэтому выяснение причин и механизмов, вызывающих изменения пластических свойств кристаллов под влиянием высокочастотной вибрации ультразвукового диапазона частот, остается фундаментальной задачей физики конденсированных сред и в тоже время имеет большое прикладное значение.

Наиболее эффективным способом исследования взаимодействия полей и дефектов кристаллической структуры является метод компьютерного моделирования. Одним из распространенных видов дефектов структуры кристаллов являются дислокации. Дислокации в кристаллах - это протяженные дефекты кристаллической решетки, представляющие собой линии, вдоль и вблизи которых нарушено характерное для кристалла правильное расположение атомных плоскостей. Дислокации и другие дефекты в кристаллах определяют многие физические свойства кристаллов, называемые структурно-чувствительными. Избирательное травление позволяет установить только начальное и конечное состояния системы дислокаций. Просвечивающей электронной микроскопии доступны лишь образцы в виде тонких пленок. Процессы в тонких пленках и массивных кристаллах могут существенно отличаться, поэтому закономерности, установленные для пленок, нельзя использовать для массивных кристаллов. Кроме того, в реальных условиях воздействие бывает комплексным, и выделить влияние отдельных факторов не представляется возможным. Моделирование позволяет выяснить влияние микроструктуры на макроскопические свойства кристаллов[10] и микромеханизмы, обуславливающие это влияние. Поэтому разработка моделей, алгоритмов и программ для осуществления моделирования дислокационных процессов также является актуальной задачей для современной физики конденсированных состояний и важна для прикладных задач.

Целью настоящей работы являлось:

Реализация модели движения дислокационного сегмента под действием постоянной силы, методом конечных разностей по неявной схеме.

Для достижения поставленной цели необходимо решить следующие задачи.

" изучить предметную область;

" проанализировать аналогичные работы и область применения;

" вывести уравнение смещения точек дислокации, получить матрицу коэффициентов и на их основе построить математическую модель движения точек дислокации;

" реализовать модель в среде программирования;

Мною предпринята попытка методом компьютерного моделирования с использованием неявного метода конечных разностей, исследовать зарождение и движение дислокаций в поле постоянной силы в условиях, приближенных к реальной ситуации. Использована математическая модель, описывающая работу источника Франка-Рида, концы которого закреплены дислокациями леса, совершающими гармонические колебания, и установлены закономерности поведения источника в этой ситуации. При моделировании эволюции дислокационного источника за основу была взята методика, предложенная В.Д. Нациком и К.А. Чишко для случая постоянной внешней нагрузки [1]. В [2-4] эта методика получила дальнейшее развитие для случая ультразвукового нагружения.

Задачами подобного моделирования занимаются в различных научных центрах, так например, одним из центров, предлагающих программное обеспечение для моделирования физических процессов является Ливерморская лаборатория (Livermore Software Technology Corporation (LSTC)), штат Калифорния [5].Разработанная в LSTC программа "LS-DYNA"[9-10] была первой в своей области и послужила основой для большинства современных пакетов высоконелинейного динамического анализа. Эта программа используется многими всемирно известными промышленными предприятиями и фирмами, научно-исследовательскими институтами и учреждениями образования для решения задач инженерного анализа, таких как: машиностроение и технология материалов, автомобильная промышленность, аэрокосмическая промышленность, строительство, медицина, биомеханика, оборонная промышленность и др.

Литература

1. Нацик В.Д., Чишко К.А. Динамика и звуковое излучение источника Франка-Рида, Препринт ФТИНТ АН УССР, Харьков, 1976.

2. Благовещенский В. В. Автореферат канд. дисс, МГУ, 1982.

3. Леготин Д.Л., Бубновская О.В., Тяпунина Н.А. Моделирование поведения дислокационных петель в неоднородных полях. // Вестн. Моск. ун-та, сер. 3, Физика. Астрономия. 1996. № 1. с. 58.

4. Леготин Д.Л. Автореф. дис. канд. физ.-мат. наук. М. (МГУ), 1993.

5. http://www.lstc.com

6. Сёмкин С.И. Моделирование движения дислокационного сегмента под действием ультразвука в поле колеблющихся дислокаций перпендикулярных плоскости скольжения. // Материалы студенческой конференции "Ступени Роста" КГУ Кострома 2008.

7. Долгих Н.И. Расчет радиусов кривизны при моделировании движения дислокационного сегмента в ультразвуковом поле. // Материалы студенческой конференции "Ступени Роста" КГУ Кострома 2008.

8. И. Бабушка, Э. Витасек, М. Прагер "Численные процессы решения дифференциальных уравнений". - М. 1969.

9. Сёмкин С.И. Моделирование движения дислокационного сегмента под действием ультразвука в поле колеблющихся дислокаций перпендикулярных плоскости скольжения. // Материалы студенческой конференции "Ступени Роста" КГУ Кострома 2008.

10. Леготин Д.Л., Бубновская О.В., Тяпунина Н.А. Моделирование поведения дислокационных петель в неоднородных полях. // Вестн. Моск. ун-та, сер. 3, Физика. Астрономия. 1996. № 1. с. 58.

11. Вержбицкий В.М. Основы численных методов. - М.:Высш.шк.,2002.

Примечаний нет.

2000-2024 © Copyright «DipMaster-Shop.ru»