книга DipMaster-Shop.RU
поиск
карта
почта
Главная На заказ Готовые работы Способы оплаты Партнерство Контакты F.A.Q. Поиск
"Газовая хроматография" ( Контрольная работа, 16 стр. )
"Зонная структура и плотность состояний кластеров алюминия состоящих из 4-15 атомов" ( Дипломная работа, 75 стр. )
"Путь к периодическому закону" ш5745444 ( Контрольная работа, 19 стр. )
. Какой объем водорода необходимо взять для восстановления 20 кг меди из ее оксида? 124кый ( Контрольная работа, 28 стр. )
. Охарактеризуйте химический состав организма человека, укажите основные органические и неорганические вещества, их биологическую роль ец3533 ( Контрольная работа, 23 стр. )
. Правила перевозки хлора железнодорожным транспортом и меры безопасности при перевозки е3434242 ( Контрольная работа, 10 стр. )
122507(к) кр Химия.doc ец22 ( Контрольная работа, 2 стр. )
18. Диссоциация кислот, оснований и солей разных типов 12 6734645 ( Контрольная работа, 23 стр. )
2 контрольные работы по химии ( Контрольная работа, 15 стр. )
3. Общественная и научноорганизационная деятельность Семенова Н.Н…………………………………………………………8 ( Контрольная работа, 11 стр. )
3. Химический состав строительных материалов 10456788 ( Контрольная работа, 18 стр. )
6112707(к) к.р. Химия Решить 11 задач : 20, 23, 46, 69, 92, 115, 138, 141, 164, 187, 210 234131 ( Контрольная работа, 15 стр. )
6121602 (к) к.р. Химия 10 задач 12131 ( Контрольная работа, 2 стр. )
707 химия.doc.Определите массу оксида двухвалентного металла, которая пошла на реакцию с 5,6 дм3 водорода (н.у.), если молярная масса эквивалента оксида металла 39,77 г/ моль.234 ( Контрольная работа, 12 стр. )
I. СИНТЕЗ КАНАБИДИОЛА н4622422 ( Курсовая работа, 31 стр. )
Аллотермические процессы переработки твердого топлива ( Контрольная работа, 23 стр. )
Алюминий и экология ( Реферат, 19 стр. )
Алюминий. Положение в периодической системе, физические и химические свойства ( Реферат, 18 стр. )
Анализ фармакокинетики преднизолона различных производителей пн544566 ( Контрольная работа, 28 стр. )
аналитич.химия. н433 ( Контрольная работа, 13 стр. )
Аналитическая химия ( Контрольная работа, 16 стр. )
Аналитическая химия ( Контрольная работа, 4 стр. )
Аналитические реакции цианид - иона CN-. 54 469078 ( Курсовая работа, 67 стр. )
Аналитические реакции нитрат - иона NO3-. 6245889 ( Контрольная работа, 28 стр. )
Аналитические реакции цитрат - иона. 667886 ( Контрольная работа, 8 стр. )

План

Введение

I. История создания химических источников тока

II. Принцип действия

III. Классификация, устройство и принцип действия химических источников тока

1. Гальванический элемент

2. Электрические аккумуляторы

А) Щелочные аккумуляторы

3. Топливный элемент

А) Принцип действия

Б) Принцип разделения потоков топлива и горючего

В) Пример водородно-кислородного топливного элемента

Г) История исследований в России

Д) Применение топливных элементов

Е) Проблемы топливных элементов

IV. Эксплуатация элементов и батарей

V. Регенерация гальванических элементов и батарей

VI. Особенности некоторых видов гальванических элементов и их краткие характеристики

Заключение

Список использованной литературы

Введение

Химические источники тока в течении многих лет прочно вошли в нашу жизнь. В быту потребитель редко обращает внимание на отличия используемых химических источниках тока. Для него это батарейки и аккумуляторы. Обычно они используются в устройствах таких, как карманные фонари, игрушки, радиоприемники или автомобили. В том случае, когда потребляемая мощность относительно велика (10Ач), используются аккумуляторы, в основном кислотные, а также никель - железные и никель - кадмиевые. Они применяются в портативных электронных вычислительных машинах (Laptop, Notebook, Palmtop), носимых средствах связи, аварийном освещении и пр.

В силу ряда обстоятельств химические генераторы электрической энергии являются наиболее перспективными. Их преимущества проявляются через такие параметры, как высокий коэффициент выхода энергии; бесшумность и безвредность; возможность использования в любых условиях, в том числе в космосе и под водой, в стационарных и переносных устройствах, на транспорте и т.д.

В последние годы такие аккумуляторы широко применяются в резервных источниках питания ЭВМ и электромеханических системах, накапливающих энергию для возможных пиковых нагрузок и аварийного питания электроэнергией жизненно - важных систем.

Цели и задачи. В данной работе мне необходимо разобрать принцип действия гальванических элементов, познакомиться с историей их создания, особенностями классификации и устройством различных видов гальванических элементов, а также применением в тех или иных видов химических источников тока в повседневной жизни и различных сферах производства.

I. История создания химических источников тока

Химические источники тока (аббр. ХИТ) - устройства, в которых энергия протекающих в них химических реакций непосредственно превращается в электрическую энергию.

История создания

Вольтов столб

Первый химический источник тока был изобретён итальянским учёным Алессандро Вольта в 1800 году. Это был элемент Вольта - сосуд с солёной водой с опущенными в него цинковой и медной пластинками, соединенными проволокой. Затем учёный собрал батарею из этих элементов, которая в последствии была названа Вольтовым столбом. Это изобретение в последствии использовали другие учёные в своих исследованиях. Так, например, в 1802 году русский академик В. В. Петров сконструировал Вольтов столб из 2100 элементов для получения электрической дуги. В 1836 году английский химик Джон Дэниель усовершенствовал элемент Вольта, поместив цинковый и медный электроды в раствор серной кислоты. Эта конструкция стала называться "элементом Даниэля". В 1859 году французский физик Гастон Плантэ изобрёл свинцово-кислотный аккумулятор. Этот тип элемента и по сей день используется в автомобильных аккумуляторах. В 1865 году французский химик Ж. Лекланше предложил свой гальванический элемент (элемент Лекланше), состоявший из цинкового стаканчика, заполненного водным раствором хлористого аммония или другой хлористой соли, в который был помещён агломерат из оксида марганца(IV) MnO2 с угольным токоотводом. Модификация этой конструкции используется до сих пор в солевых батарейках для различных бытовых устройств. В 1890 году в Нью-Йорке Конрад Губерт, иммигрант из России, создаёт первый карманный электрический фонарик. А уже в 1896 году компания National Carbon приступает к массовому производству первых в мире сухих элементов Лекланше "Columbia".

II. Принцип действия

Устройство "багдадских батареек" (200 г. до н. э.).

Основу химических источников тока составляют два электрода (катод, содержащий окислитель и анод, содержащий восстановитель), контактирующих с электролитом. Между электродами устанавливается разность потенциалов - электродвижущая сила, соответствующая свободной энергии окислительно-восстановительной реакции. Действие химических источников тока основано на протекании при замкнутой внешней цепи пространственно разделённых процессов: на катоде восстановитель окисляется, образующиеся свободные электроны переходят, создавая разрядный ток, по внешней цепи к аноду, где они участвуют в реакции восстановления окислителя.

В современных химических источниках тока используются:

в качестве восстановителя (на аноде) - свинец Pb, кадмий Cd, цинк Zn и другие металлы;

в качестве окислителя (на катоде) - оксид свинца(IV) PbO2, гидроксид никеля NiOOH, оксид марганца(IV) MnO2 и другие;

в качестве электролита - растворы щелочей, кислот или солей.

III. Классификация, устройство и принцип действия

По возможности или невозможности повторного использования химические источники тока делятся на:

1. Гальванический элемент

Гальванический элемент - химический источник электрического тока, названный в честь Луиджи Гальвани. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока. ЭДС гальванического элемента зависит от материала электродов и состава электролита. Это первичные ХИТ, которые из-за необратимости протекающих в них реакций, невозможно перезарядить.

Гальванические элементы являются источниками электрической энергии одноразового действия. Реагенты (окислитель и восстановитель) входят непосредственно в состав гальванического элемента и расходуются в процессе его работы. Гальванический элемент характеризуется ЭДС, напряжением, мощностью, емкостью и энергией, отдаваемой во внешнюю цепь, а также сохраняемостью и экологической безопасностью.

ЭДС определяется природой протекающих в гальваническом элементе процессов. Напряжение гальванического элемента U всегда меньше его ЭДС в силу поляризации электродов и потерь сопротивления:

U = Eэ - I(r1-r2) - ?E,

где Еэ - ЭДС элемента; I - сила тока в режиме работы элемента; r1 и r2

Список литературы

1. Деордиев С.С. Аккумуляторы и уход за ними. К.: Техника, 1985. 136 с.

2. Электротехнический справочник. В 3-х т. Т.2. Электротехнические изделия и устройства/под общ. ред. профессоров МЭИ (гл. ред. И. Н. Орлов) и др. 7 изд. 6 испр. и доп. М.: Энергоатомиздат, 1986. 712 с.

3. Н.Л.Глинка. Общая химия. Издательство "Химия" 1977.

4. Багоцкий В.С., Скундин А.М. Химические источники тока. М.: Энергоиздат, 1981. 360 с.

5. Хрусталёв Д.А. Аккумуляторы. М: Изумруд, 2003.

6. Кромптон. Т. Первичные источники тока. Москва. "Мир". 1986.г.

7. Кромптон Т. Первичные источники тока. - 1982

8. Справочник химика.том 5.изд "химия".Ленинград.1968.г.

Электронные ресурсы:

9. http://www.spsu.ru/

10. http://ru.wikipedia.org/wiki/

11. http://www.xumuk.ru/encyklopedia/

Примечаний нет.

2000-2024 © Copyright «DipMaster-Shop.ru»