книга DipMaster-Shop.RU
поиск
карта
почта
Главная На заказ Готовые работы Способы оплаты Партнерство Контакты F.A.Q. Поиск
"Нелинейная цифровая фильтрация" ( Курсовая работа, 40 стр. )
"Основы теории управления"* ( Контрольная работа, 13 стр. )
"Программа для разархивации файла, созданного по алгоритму RLE" ( Контрольная работа, 11 стр. )
"Технология "Millipede". Разработка модели форматирования в системе FAT 32." ( Контрольная работа, 10 стр. )
AJAX – интерфейс для системы CATS ( Курсовая работа, 13 стр. )
CMS для компании «КАРЛЭНД Сервис» ( Отчет по практике, 26 стр. )
JST Компилятор Smalltalk JVM ( Курсовая работа, 24 стр. )
Microsoft Excel ( Контрольная работа, 28 стр. )
PaketForm. Система обработки заявок на открытие счетов в ОАО АКБ «Росбанк». ( Отчет по практике, 29 стр. )
program z5 ( Контрольная работа, 11 стр. )
Web-рейтинг “Active Student” ( Курсовая работа, 13 стр. )
АВТОМАТИЗАЦИЯ ПРОЦЕССА ЮНИТ-ТЕСТИРОВАНИЯ ПРИЛОЖЕНИЯ «ПОЧТОВЫЙ КЛИЕНТ»: APPLICATION LAYER ( Курсовая работа, 22 стр. )
АВТОМАТИЗАЦИЯ ПРОЦЕССА ЮНИТ-ТЕСТИРОВАНИЯ ПРИЛОЖЕНИЯ «ПОЧТОВЫЙ КЛИЕНТ»: APPLICATION LAYER 2007-23 ( Курсовая работа, 23 стр. )
Автоматизация процесса создания выходной документации для ОАО “Черногорский Завод Искусственных Кож ( Дипломная работа, 182 стр. )
Автоматизированная система управления ОПтК ( Курсовая работа, 43 стр. )
Автоматизированная система оперативно-диспетчерского управления (АСОДУ) патентно-правового бюро «Эксперт» ( Дипломная работа, 116 стр. )
Автоматизированное рабочее место «СЕССИЯ» ( Курсовая работа, 41 стр. )
Автоматическое обновление метаданных на основе версий DDL ( Курсовая работа, 14 стр. )
Алгоритмизация и программирование процессов обработки данных ( Контрольная работа, 9 стр. )
Алгоритмические языки и программирование ( Курсовая работа, 31 стр. )
Алгоритмические языки высокого уровня. Структура формального алгоритмического языка ( Контрольная работа, 14 стр. )
Алгоритмические языки и теория програмирования ( Курсовая работа, 41 стр. )
Алгоритмический язык Паскаль ( Контрольная работа, 20 стр. )
Алгоритмы работы с некоторыми структурами данных при программировании на Delphi. ( Контрольная работа, 40 стр. )
Анализ потоков управления для языка программирования Pascal ( Курсовая работа, 6 стр. )

Содержание

Содержание 2

1. Введение 3

1.1. Глоссарий 3

1.2. Описание предметной области 3

1.3. Неформальная постановка задачи 4

1.4. План работ 4

2. Математические методы 4

2.1. Обзор существующих методов решения 4

2.2. Изложение выбранного метода решения 7

3. Проект 15

3.1. Средства реализации 15

3.2. Модули и алгоритмы 15

Заключение 15

Список литературы 15

Приложение 1. Исходный код. 17

1. Введение

1.1. Глоссарий

Случайные поля – это многопараметрические взаимно обусловленные случайные процессы, описывающие, как правило, распределенные в пространстве и во времени объ-екты (явления).

Значения случайной величины i = 1…N, которые она принимает в отдельных опытах, называются реализациями случайной величины.

Нормальное распределение – нормальное распределение (этот термин был впервые использован Гальтоном в 1889 г.), также иногда называемое гауссовским, определяется следующим образом:

f(x) = , , где µ - среднее, - стандартное отклонение.

Двумерное нормальное распределение – две переменные имеют двумерное нор-мальное распределение, если для каждого фиксированного значения одной переменной соответствующие значения другой переменной нормально распределены.

Коэффициент корреляции – , где – взаимный корреляционный мо-мент, , . При этом, если случайные величины x и y связаны линейно, то 1 (либо –1), если эти величины оказываются некоррелированными, то 0. Точный фи-зический смысл корреляционной функции – условная плотность вероятности обнаружить частицу на расстоянии r, при условии, что в начале координат находится другая частица.

При представлении случайного процесса X(t) в виде ряда гармонических колебаний с частотами следует рассматривать амплитуды разложения Xk как случайные величины.

Для случайного стационарного процесса спектром называют распределение диспер-сий Dk случайных амплитуд по частотам .

1.2. Описание предметной области

В настоящее время в практике океанологических исследований широко применяются спутниковые дистанционные методы определения физических характеристик морской по-верхности – температуры поверхности, интенсивность восходящего излучения в видимом диапазоне электромагнитного излучения (цвет моря) и другие. Анализ пространственного распределения этих характеристик или полей - выделение фоновых структурных элемен-тов и статистических характеристик, позволяет дать интерпретацию спутниковых измере-ний с точки зрения физических процессов, происходящих в океане и морях. Однако, чис-ленный анализ спутниковых данных осложняется большим уровнем шума измерений, не-равномерностью распределения данных в пространстве и времени.

При разработке численных методов, алгоритмов и программ обработки полей спут-никовых данных, определения их возможностей и точности необходимо проведение боль-шого числа численных экспериментов с имитацией (или моделированием) реальных полей океанологических элементов. Модельные поля должны отражать основные статистические Список литературы

[1] Кравцов Ю.А., Фейзулин З.И. Радиотехника и электроника. 1971. Т.16, № 10. С.1771.

[2] Рытов С.М., Кравцов Ю.А., Татарский В.И. Введение в статистическую радиофизику. Ч. 2. Случайные поля. М.: Наука, 1978.

[3] Татарский В.И. Распространение волн в турбулентной атмосфере. М.: Наука, 1967. 450 с.

[4] Шалыгин А.С., Палагин Ю.И. Имитационные модели случайных полей. С.-Петербург, 1998.

[5] Казакевич Д.И. Основы теории случайных функций в задачах гидрометеороло-гии. Л.: Гидрометеоиздат, 1989.

[6] Зуев В.Е., Титов Г.А. Оптика атмосферы и климат. Томск: Спектр, 1996. 272 с.

[7] Баранов В.А., Кравцов Ю.А. Изв. вузов. Радиофизика. 1975. Т. 18, № 1. С. 52.

[8] Кленин А.С. Методические указания по подготовке и защите отчётов на специа-лизации «Прикладная математика. Системное программирование» (Версия 0.7). Владиво-сток, 2003.

[9] Гофман В.Э., Хомоненко А.Д. Delphi 6. СПб.: БХВ-Петербург, 2001. 1152 с.

[10] Каргин Б.А., Пригарин С.М. Моделирование стохастических полей кучевой об-лачности и исследование их радиационных свойств методом Монте-Карло. 1988. 18 с.

[11] Михайлов Г.А. Численное построение случайного поля с заданной спектральной плотностью. Докл. АН СССР. 1982. Т. 262. № 3. С. 531-535.

[12] Акимов П.И., Баскаков С.И. Изв. вузов. Радиофизика. 1983. Т. 26., № 1. С. 82.

[13] Крашенников В.Р., Васильев К.К. Методы фильтрации многомерных случайных полей. Саратов: Изд-во Саратовского университета, 1990.

[14] Chevret P., Blanco-Benon Ph., Juve D. J. Acoustical Society of America. 1996. No. 2. P. 3 587.

[15] Пригарин С.М., Маршак А.Л. Численная имитационная модель разорванной облачности, адаптированная к результатам наблюдений. Новосибирск: "Оптика атмосферы и океана", 2005.

[16] Stefaan M. A. Rodts, Peter G. Duynkerke, Harm J. J. Jonker Size Distributions and Dynamical Properties of Shallow Cumulus Clouds from Aircraft Observations and Satellite Data. American Meteorological Society.

[17] Грудин Б.Н., Плотников В.С., Фищенко В.К. Исследования неупорядоченных сред по электроннооптическим изображениям. Владивосток: Издательство Дальневосточ-ного государственного университета, 1999.

Список литературы

[1] Кравцов Ю.А., Фейзулин З.И. Радиотехника и электроника. 1971. Т.16, № 10. С.1771.

[2] Рытов С.М., Кравцов Ю.А., Татарский В.И. Введение в статистическую радиофизику. Ч. 2. Случайные поля. М.: Наука, 1978.

[3] Татарский В.И. Распространение волн в турбулентной атмосфере. М.: Наука, 1967. 450 с.

[4] Шалыгин А.С., Палагин Ю.И. Имитационные модели случайных полей. С.-Петербург, 1998.

[5] Казакевич Д.И. Основы теории случайных функций в задачах гидрометеороло-гии. Л.: Гидрометеоиздат, 1989.

[6] Зуев В.Е., Титов Г.А. Оптика атмосферы и климат. Томск: Спектр, 1996. 272 с.

[7] Баранов В.А., Кравцов Ю.А. Изв. вузов. Радиофизика. 1975. Т. 18, № 1. С. 52.

[8] Кленин А.С. Методические указания по подготовке и защите отчётов на специа-лизации «Прикладная математика. Системное программирование» (Версия 0.7). Владиво-сток, 2003.

[9] Гофман В.Э., Хомоненко А.Д. Delphi 6. СПб.: БХВ-Петербург, 2001. 1152 с.

[10] Каргин Б.А., Пригарин С.М. Моделирование стохастических полей кучевой об-лачности и исследование их радиационных свойств методом Монте-Карло. 1988. 18 с.

[11] Михайлов Г.А. Численное построение случайного поля с заданной спектральной плотностью. Докл. АН СССР. 1982. Т. 262. № 3. С. 531-535.

[12] Акимов П.И., Баскаков С.И. Изв. вузов. Радиофизика. 1983. Т. 26., № 1. С. 82.

[13] Крашенников В.Р., Васильев К.К. Методы фильтрации многомерных случайных полей. Саратов: Изд-во Саратовского университета, 1990.

[14] Chevret P., Blanco-Benon Ph., Juve D. J. Acoustical Society of America. 1996. No. 2. P. 3 587.

[15] Пригарин С.М., Маршак А.Л. Численная имитационная модель разорванной облачности, адаптированная к результатам наблюдений. Новосибирск: "Оптика атмосферы и океана", 2005.

[16] Stefaan M. A. Rodts, Peter G. Duynkerke, Harm J. J. Jonker Size Distributions and Dynamical Properties of Shallow Cumulus Clouds from Aircraft Observations and Satellite Data. American Meteorological Society.

[17] Грудин Б.Н., Плотников В.С., Фищенко В.К. Исследования неупорядоченных сред по электроннооптическим изображениям. Владивосток: Издательство Дальневосточ-ного государственного университета, 1999.

приложений нет

2000-2024 © Copyright «DipMaster-Shop.ru»