книга DipMaster-Shop.RU
поиск
карта
почта
Главная На заказ Готовые работы Способы оплаты Партнерство Контакты F.A.Q. Поиск
"Нелинейная цифровая фильтрация" ( Курсовая работа, 40 стр. )
"Основы теории управления"* ( Контрольная работа, 13 стр. )
"Программа для разархивации файла, созданного по алгоритму RLE" ( Контрольная работа, 11 стр. )
"Технология "Millipede". Разработка модели форматирования в системе FAT 32." ( Контрольная работа, 10 стр. )
AJAX – интерфейс для системы CATS ( Курсовая работа, 13 стр. )
CMS для компании «КАРЛЭНД Сервис» ( Отчет по практике, 26 стр. )
JST Компилятор Smalltalk JVM ( Курсовая работа, 24 стр. )
Microsoft Excel ( Контрольная работа, 28 стр. )
PaketForm. Система обработки заявок на открытие счетов в ОАО АКБ «Росбанк». ( Отчет по практике, 29 стр. )
program z5 ( Контрольная работа, 11 стр. )
Web-рейтинг “Active Student” ( Курсовая работа, 13 стр. )
АВТОМАТИЗАЦИЯ ПРОЦЕССА ЮНИТ-ТЕСТИРОВАНИЯ ПРИЛОЖЕНИЯ «ПОЧТОВЫЙ КЛИЕНТ»: APPLICATION LAYER ( Курсовая работа, 22 стр. )
АВТОМАТИЗАЦИЯ ПРОЦЕССА ЮНИТ-ТЕСТИРОВАНИЯ ПРИЛОЖЕНИЯ «ПОЧТОВЫЙ КЛИЕНТ»: APPLICATION LAYER 2007-23 ( Курсовая работа, 23 стр. )
Автоматизация процесса создания выходной документации для ОАО “Черногорский Завод Искусственных Кож ( Дипломная работа, 182 стр. )
Автоматизированная система управления ОПтК ( Курсовая работа, 43 стр. )
Автоматизированная система оперативно-диспетчерского управления (АСОДУ) патентно-правового бюро «Эксперт» ( Дипломная работа, 116 стр. )
Автоматизированное рабочее место «СЕССИЯ» ( Курсовая работа, 41 стр. )
Автоматическое обновление метаданных на основе версий DDL ( Курсовая работа, 14 стр. )
Алгоритмизация и программирование процессов обработки данных ( Контрольная работа, 9 стр. )
Алгоритмические языки и программирование ( Курсовая работа, 31 стр. )
Алгоритмические языки высокого уровня. Структура формального алгоритмического языка ( Контрольная работа, 14 стр. )
Алгоритмические языки и теория програмирования ( Курсовая работа, 41 стр. )
Алгоритмический язык Паскаль ( Контрольная работа, 20 стр. )
Алгоритмы работы с некоторыми структурами данных при программировании на Delphi. ( Контрольная работа, 40 стр. )
Анализ потоков управления для языка программирования Pascal ( Курсовая работа, 6 стр. )

Введение. 3

Практическая часть: 5

Описание "Millipede" 5

Основными компонентами системы являются: двумерный массив кантилеверов и микромеханический сканер, который двигает запоминающую среду соответственно массиву. Сложная конструкция позиционирует кантилеверы точно над полимером и поглощает внешние вибрации. Для произведения операций чтения, записи и удаления кантилеверы приводятся в контакт с запоминающей средой - тонкой полимерной пленкой, покрывающей кремниевую подложку, которая двигается в х- и у- направлениях. Полимер позиционируется с точностью до нанометров.

Разработка модели форматирования "Millipede" в файловой системе FAT 32 7

Заключение. 9

Список литературы 10

В двадцать первом веке нанометр будет, вероятнее всего, играть такую же роль, как микрометр в двадцатом. Нано размеры также распространятся на устройства хранения данных. В настоящее время в устройствах на магнитной основе нет ясного пути достижения нано величин по всем трем измерениям. Основой хранения данных в 21 веке может по-прежнему остаться магнетизм. Однако, через несколько лет данная технология придет к пику своей эволюции - хорошо известные суперпарамагнитные пределы будут достигнуты. Было предложено несколько идей преодоления этого предела. Одна из них включает использование структурированных магнитных носителей, для которых еще предстоит разработать идеальные схемы записи/чтения, но основной задачей является структурирование магнитного диска рентабельным путем. Другие предложения призывают к использованию совершенно новых носителей и технологий, таких как зондовая микроскопия и голографические методы. Вообще, если существующая технология начинает достигать своих пределов в процессе эволюции, и параллельно с этим возникают новые альтернативы, то, как правило, случаются две вещи: существующая и хорошо укрепившаяся технология будет исследована до конца с целью получить максимум из вложенных в нее средств. Затем, когда возможности улучшения были исчерпаны, технология может остаться в специфических областях применения, но восходящая технология перехватит эстафету, открывая новые перспективы и направления.

Возьмем, например, вакуумную электронную трубку, которая была замещена транзистором. Трубка все еще находит применение, но в очень узких областях, в то время как транзистор эволюционировал в сегодняшнюю микроэлектронику высокомасштабной интеграции микропроцессоров и оперативной памяти. Оптическая литография - еще один пример: хотя, сейчас это доминирующая технология, вскоре она достигнет своих фундаментальных пределов и будет замещена неизвестной пока технологией.

В любом случае, новая технология, считающаяся кандидатом на замещение существующей, должна предлагать долгосрочные перспективы. В частности для хранения данных, технология, обеспечивающая более высокую плотность записи должна иметь потенциал для дальнейшего уплотнения и масштабирования, желательно до нанометров или даже атомных размеров.

Единственное доступное на сегодняшний момент простое устройство, обеспечивающее очень долгосрочные перспективы, - острая нанометровая игла. Такие иглы сейчас используются в каждом атомно-силовом микроскопе (АСМ) и сканирующем туннельном микроскопе (СТМ) для получения изображений поверхностей атомного масштаба. Простая игла - очень надежный инструмент, фокусирующийся на одной функциональной возможности: сильнейшее сужение области взаимодействия.

В начале девяностых Мамин и Ругар из Исследовательского Центра IBM в Алмадене впервые предложили возможность использования АСМ иглы для чтения и записи топографических особенностей поверхности в целях хранения данных. В одной из схем, разработанной ими чтение и запись были продемонстрированы с использованием одной АСМ иглы, которая контактировала с вращающейся поликарбонатной подложкой. Запись осуществлялась термомеханически путем нагревания иглы. Этим путем плотность записи составляла 30 Gb/in^2, что было значительным улучшением по сравнению с технологиями тех дней. Более поздние усовершенствованные установки достигли скорости передачи данных до 10 Mb/s и имплементацию серволегурирования дорожки.

В настоящее время единичная АСМ игла работает в микросекундных шкалах времени. Однако, магнитное хранение данных оперирует в наносекундах, делая ясным то, что скорости АСМ нужно поднять на, как минимум, три порядка, чтобы конкурировать с магнитными устройствами.

Представленная в данной работе концепция "Millipede" - новый подход к системам хранения данных, с высокой скоростью передачи данных и сверхвысокой плотности записи. Это не модификация существующей технологии, хотя использование магнитных материалов в качестве запоминающей среды не исключено. Игла обеспечивает высокую локальность, а параллельная работа массива таких игла - высокую скорость передачи данных.

1. The "Millipede" - Nanotechnology Entering Data Storage

G. Binnig, G. Cherubini, M. Despont, U. Duerig, E. Eleftheriou, H. Pozidis, P. Vettiger

Handbook of Nanotechnology, Ed. Bharat Bhushan, Springer-Verlag, Berlin.

2. Интернет: http://www.zurich.ibm.com/st/storage/

3. http://en.wikipedia.org/wiki/File_Allocation_Table

4. http://www.pjrc.com/tech/8051/ide/fat32.html

5. http://en.wikipedia.org/wiki/Flash_memory

6. http://en.wikipedia.org/wiki/Atomic_force_microscope

Примечаний нет.

2000-2024 © Copyright «DipMaster-Shop.ru»