книга DipMaster-Shop.RU
поиск
карта
почта
Главная На заказ Готовые работы Способы оплаты Партнерство Контакты F.A.Q. Поиск
Виды адсорбентов для очистки воды 6352442 ( Контрольная работа, 16 стр. )
Виды химических элементов ( Контрольная работа, 7 стр. )
виробництво етилформіату ( Курсовая работа, 60 стр. )
Влияние физико-химических и химических факторов на развитие бактерий ( Контрольная работа, 17 стр. )
Во сколько раз возрастет скорость химической реакции при повышении температуры с 10 до 100 ° С, если при нагревании на 10° С скорость удваивается? н352422 ( Контрольная работа, 23 стр. )
Водный раствор хлорида железа (III) при длительном кипячении становится мутным. Поясните происходящее явление. ец3424 ( Контрольная работа, 6 стр. )
Вопрос 22. Объясните образование электрического заряда на поверхности белковой молекулы ( Контрольная работа, 16 стр. )
Вопросы к экзамену по химии 2005-14 ( Контрольная работа, 14 стр. )
Вопросы к экзамену по химии ( Контрольная работа, 14 стр. )
Вопросы по химии ( Контрольная работа, 10 стр. )
Выразите в молях: а) 6,02 молекул С2Н2, б) 1,80*1024 атомов азота; в) 3,01*1023 молекул азота. Какова мольная масса указанных веществ?77 ( Контрольная работа, 10 стр. )
Вычисление молярной массы эквивалента, молярной и относительной атомной массы металла ( Контрольная работа, 13 стр. )
Вычисление молярной массы эквивалента, молярной и относительной атомной массы металла 354 ( Контрольная работа, 14 стр. )
Вычисление эквивалента, молярной массы эквивалентов кислоты и ее основности ( Контрольная работа, 17 стр. )
Вычисление эквивалентной массы оксида металла ( Контрольная работа, 14 стр. )
Вычисление эквивалентной массы, мольной массы и атомной массы металла. Электронные формулы атомов элементов ( Контрольная работа, 12 стр. )
Вычислите в молях: а) 6,02 ?1022 молекул С2Н2; б) 1,80 • 1024 атомов азота; в) 3,01 ?1023 молекул NH3. Какова молярная масса указанных веществ? ( Контрольная работа, 5 стр. )
Гальванические элементы ( Курсовая работа, 41 стр. )
Где расположены в периодической системе самые сильные окислители? Дайте ответ исходя из представлений о строении атома 6еп ( Контрольная работа, 5 стр. )
ГЕОХИМИЧЕСКИЕ БАРЬЕРЫ ( Реферат, 4 стр. )
ГЕОХИМИЯ МАГМАТИЧЕСКОГО ПРОЦЕССА ( Реферат, 8 стр. )
Гидролиз сложного эфира XVa с сконцентрированной соляной кислотой привел к искомомой Лактонкарбоновой кислоте XVI, которая легко кристаллизовалась. Ее структура является определяется числами анализа такими как спектр IR. (1785 см -1, ?-лактон, 1705 см - ( Курсовая работа, 33 стр. )
Групповой реагент - гидроксид натрия или калия. Аналитические реакции катионов магния Mg 2+. 0-7 ( Курсовая работа, 52 стр. )
Групповой реагент - гидроксид натрия или калия. Аналитические реакции катионов магния Mg 2+. 547756445 ( Контрольная работа, 8 стр. )
Групповой реагент - гидроксид натрия или калия в присутствии Н2О2 10 ( Контрольная работа, 21 стр. )

Введение…………………………………………………………………………..5

Глава I. Методы исследования релаксационных процессов…………….12

§ 1. Непрерывный спектр времен релаксации полимерных материалов…….16

§ 2. Критерий применимости различных приближений……………………....26

§ 3. Дискретный спектр времен релаксации…………………………………...27

§ 4. Непрерывные релаксационные спектры из реологических экспериментальных данных…………………………………………………….30

§ 5. Деформирование и разрушение ориентированных полимерных материалов в режимах ? = соnst и ? = соnst…………………………………...31

Глава II. Объекты исследования и методика эксперимента……………..38

§ 1. Объекты исследования и методика приготовления образцов……………38

§2. Аппаратура и методика эксперимента релаксации напряжения…………39

Глава III. Особенности процесса релаксации напряжения

в ориентированном полипропилене…………………………………………46

§1. Влияние деформации на характер релаксационных процессов

в ориентированном полипропилене……………………………………………46

§2. Зависимость релаксации напряжения в ориентированном полипропилене от температуры…………………………………………………………………..47

Глава IV. Результаты обработки кривых релаксации напряжения в ориентированном полипропилене с использованием метода спектров времен релаксации…………………..................................................................50

§1. Зависимость параметров ?1, ?2, ?3, ?4 от величины деформации………...50

§2. Деформационная зависимость времен релаксации………………………..53

§3. Температурные зависимости параметров ?1, ?2, ?3, ?4, ?1, ?2, ?3, ?4……………54

Выводы…………………………………………………………………………..58

Заключение……………………………………………………………………...59

Литература………………………………………………………………………60

Механические свойства полимерных материалов существенным образом зависят от их строения (на молекулярном и надмолекулярном уровнях), а также от особенностей молекулярно-кинетических процессов протекающих в них и зависящих от характера теплового движения.

К молекулярно-кинетическим процессам в полимерах относится широкий круг явлений: диффузия и самодиффузия, кристаллизация и плавание, испарение и растворение, стеклование и размягчение, деформируемость и разрушение, механические потери, вязкое течение и многое другое. Только часть этих процессов представляет собой релаксационные явления, столь характерные для полимеров. К ним относятся все изменения вязкоупругих свойств полимеров (процесс релаксации механических напряжений, механические потери при многократных деформациях и вязкое течение), а также процессы структурного и механического стеклования. Таким образом, знать все о релаксационных свойствах полимеров - значит знать все почти об их механических свойствах.

Изучение явлений механической релаксации в полимерах (релаксации напряжения, температурно-частотных зависимостей динамических характеристик) позволяет не только оценивать эксплуатационные свойства полимерных материалов, но и устанавливать взаимосвязь между химическим и физическим строением полимеров, характерам молекулярной подвижности и макроскопическими релаксационными свойствами полимеров. Это направление получило в настоящее время широкое развитие, так как однозначное установление связи между структурой и свойствами полимеров способствует решению проблемы создания новых высокомолекулярных веществ материалов на их основе с ценным комплексом свойств.

Отсутствие строгих молекулярных теорий, описывающих релаксационные явления в высокомолекулярных веществах, проводить экспериментальное исследование процессов молекулярной релаксации полимеров в широком интервале температур особенно важным [7, 9-11]. Важность исследования процессов механической релаксации в полимерах объясняется не только тем, что для большинства полимерных материалов механические свойства являются основными, но и специфическим проявлением релаксации на уровне надмолекулярных структур, обнаруженных методами электронной и оптической микроскопии у большинства полимеров. Оказалось, что изменение подвижности первичных надмолекулярных структур, а также перестройка и модификация вторичных макроструктур существенно влияют на механические релаксационные свойства полимеров [10]. До последнего времени считалось, что процессы молекулярной релаксации в аморфных и частично - кристаллических полимерах существенно различаются, однако обнаружение надмолекулярных структур (и изучение механизмов их трансформации) как в частично-кристаллических, так и в аморфных полимерах позволяет сделать вывод о тождественности их релаксационных процессов. И у аморфных и у частично-кристаллических полимеров при исследовании в широком температурно-частотном диапазоне обнаруживается несколько областей молекулярной релаксации, обусловленных изменением подвижности выступающих в роли кинетических отдельностей, частей макромолекул различных размеров. При этом количественными характеристиками каждой области релаксации являются соответствующие им значения температуры (или частоты), усредненное время релаксации, условная величина энергии активации и функция распределения времен релаксации, характерная для каждого из проявившихся порознь релаксационных процессов.

1. Каргин В.А., Слонимский Г.Л., Краткие очерки по физико - химии полимеров, Москва, 1970

2. Альфрей Т., Механические свойства высокополимеров, Москва, 1952.

3. Каргин В.А., Современные проблемы науки о полимерах, Москва, 1962.

4. Гуль В.Е., Структура и прочность полимеров, М., 1971, 344 с.

5. Mark H., Advansing Front in Chemistry, New - Jork, 1947, № 7.

6. Каргин В.А., Соголова Т.И., Надарейшвили Л.И., Высокомолекулярные соединения, 1964, Т.6.

7. Keller A., Plil Mag, 1957, Т. 21, р.1171.

8. Менделькерн Л., Кристаллизация полимеров, М. - Л., "Химия", 1966, 334 с.

9. Соголова Т.И., Механика полимеров, 1965, №1, с. 5 - 16.

10. Каргин В.А., Адрианова Г.П., ДАН СССР, 1961, Т. 139, с. 874.

11. Каргин В.А., Слонимский Г.Л., Успехи химии, 1955, Т. 24, с. 785.

12. Hess K., Kiessing H., Z. Phys. Chem., 1944, Bd. 193, H.3/4, s. 196 - 217.

13. Hess K., Kiessing H., Koll Z., 1953, Bd. 130, № 1, s. 10 - 19.

14. Statton W.O., Godard G., J. Appl. Phys., 1957, T. 28, p. 1111.

15. Bonard R., Hosemann R., Z. Electrochemie, 1960, т. 64, s. 314.

16. Hosemann R., Polymer, 1962, т. 34, p. 349.

17. Hearle J.W., J. Appl. Polymer Sei., 1963, т. 7, p. 1125.

18. Китайгородский А.И., Цванкин Д.Я., Петров Ю.М., Высокомолекулярные соединения, 1963, т. 5, с. 1062.

19. Журков С,Н., Слуцке А.И., Ястребинский А.А., ДАН СССР, 1963, т. 153, с. 303.

20. Джейл Ф.Х., полимерные монокристаллы, Л., "Химия", 1968, 550с.

21. Bunn C.W., Alcock T.C., Trans. Faradey. Sei., 1945, v. 41, s. 314.

22. Hawkins S.W., Richards R.B., J. Polymer Sei., 1949, v. 4, p. 515.

23. Keller A., J. Polymer Sei., 1955, v. 17, p. 291.

24. Громов А.И., Слуцке А.И., Высокомолекулярные соединения, 1963, т. 4, с. 247.

25. Слуцке А.И., Докторская диссертация, ФТИ, Л., 1968.

26. Слуцке А.И., Энциклопедия полимеров, 1973, т. 2, с. 515 - 521.

27. Новокшонова Л.А., Распопов Л.Н., Руссиян К.Н., Кудинова О.И., Манлакова Т.А., Дьячковский Ф.С., ДАН СССР, 1975, т. 224, №2, с. 384 - 386.

28. Hess K., Chemie et industrie, 1958, v. 80, p. 129.

29. Белавцева Е.М., Гумаргалиева К.З., Китайгородский А.И., ДАН СССР, 1963, т. 151, с. 1356.

30. Гальперин Е.Л., Миндрул В.Ф., Кристаллография, 1971, т. 16, № 5, с. 999 - 1004.

31. Гальперин Е.Л., Щетнев Ю.Ф., Верцнер В.Н., Высокомолекулярные соединения. Краткие сообщения, 1973, т. 156, №1, с. 38 - 40.

32. Hess K., Mahl H., Gutter E., Kolloid Z., 1957, Bd. 155, №1, s. 1 - 19.

33. Журков С.Н., Слуцке А.И., Ястребинский А.А., ФТТ, 1964, т. 6, №12, с. 3601 - 3607.

34. Журков С.Н., Егоров Е.А., ДАН СССР, 1963, т. 152, с. 1155.

35. Ферри Дж., "Вязкоупругие свойства полимеров" М. 1963.

36. Роговина Л.З., Слонимский Г.Л., Высокомолекулярные соединения, 1966, т. 8, №2, с. 219.

37. Журков С.Н., Слуцке А.И., Куженко В.С., ФТТ, 1969, т. 11, с. 296.

38. Журков С.Н., Веттегрель В.А., Новак И.И., Кашинцева К.И., ДАН СССР, 1967, т. 176, с. 623.

39. Журков С.Н., Закревский В.А., Томашевский Э.Е., ФТТ, 1964, т. 6,с. 1912.

40. Журков С.Н., Савостин А.Я., Томашевский Э.Е., ДАН СССР, 1964, т. 159,с. 303.

41. Савостин А.Я., Томашевский Э.Е., ФТТ, 1970, т. 12,с. 2857.

42. Закревский В.А., Куксенко В.С., Савостин А.Я., Слуцке А.И., Томашевский Э.Е., ФТТ, 1969, т. 11, с. 1940.

43. Куксенко В.С., Слуцке А. И., Механика полимеров, 1970, №1, с. 43.

44. Томашевский Э.Е., Автореферат кандидатской диссертации, ФТИ АН СССР, Л., 1966.

45. Campbell D., Peterlin A., J. Polymer Sei., 1968, v. B 6, p. 481.

46. Wool R.P., Statton O.W., J. Polymer Sei., Polym. Phys. Ed., 1974, v. 12, 1575.

47. Регель В.Р., Черный Н.Н., Бобоев Т.Б., Механика полимеров, 1967, №4, с. 615; 1969, №3, с. 442; 1969, №5, с, 931.

48. Куксенко В.С., Автореферат кандидатской диссертации, ФТИ АН СССР, 1969.

49. Zhurkow S.N., Kuksenko V.S., Slutsker A.I., Proc.II Intern. Conf. Fracture, Brinhton, April, 1969, p. 531.

50. Новак И.И., Веттегрень В.И., Высокомолекулярные соединения., 1964, т.6, с. 706.

51. Егоров Е.А., Кандидатская диссертация, ФТИ АН СССР, Л., 1968.

52. Губанов А.И., Механика полимеров, 1966, №1, с. 143.

53. Петухов С.М., Воронков Е.Б., Оптов В.А., Мусаелян И.Н., Чирков Н.М., Установка для исследования релаксации в полимерных материалах, Информационный листок ГОСИНТИ №509-72.

54. Финк К., Рорбаче Х., Измерение напряжений и деформаций, ГНТИ, 1963.

55. Шерматов М., Султанов У., Куксенко В.С., Слуцкер А.И., Высокомолекулярные соединения, 1976, т. А 18, №7, с. 1613-1620.

56. Шерматов М., Пихомов П.М., Корсунов В.Е., Куксенко В.С., Механика полимеров, 1976, №3, с. 515-520.

57. Уорд И., Механические свойства твердых полимеров, издательство "Химия", М., 1975, с. 350.

58. Регель В.Р., Слуцкер А.И., Томашевский Э. Е., Кинетическая природа прочности твердых тел, "Наука", М., 1974, с. 560.

59. Фридлянд К.Ю., Жиженков В.В., Егоров Е.А., Веттегрень В.И., Высокомолекулярные соединения, 1976, т. А 18, №7, с. 1534-1539.

60. Keller A., J. Polymer Sei., 1963, v. 18, s. 531.

Примечаний нет.

2000-2024 © Copyright «DipMaster-Shop.ru»