книга DipMaster-Shop.RU
поиск
карта
почта
Главная На заказ Готовые работы Способы оплаты Партнерство Контакты F.A.Q. Поиск
Применение информационных технологий в ГПКО "Кузбасская агропромышленная компания" ( Отчет по практике, 21 стр. )
Применение информационных технологий для проведения социологических опросов ( Дипломная работа, 125 стр. )
Применение информационных технологий в сфере образования и обучения 2010-37 ( Курсовая работа, 37 стр. )
Применение информационной системы Гарант на предприятии ООО "Информо-Сервис" 2006-15 ( Реферат, 15 стр. )
Применение информационных технологий при сравнительном анализе белорусско-китайского фольклора ( Дипломная работа, 45 стр. )
Применение информационных технологий в молекулярно-генетических исследованиях ( Дипломная работа, 31 стр. )
ПРИМЕНЕНИЕ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В БАНКОВСКОМ БИЗНЕСЕ ( Реферат, 25 стр. )
ПРИМЕНЕНИЕ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В ТАМОЖЕННОМ СОЮЗЕ ( Дипломная работа, 25 стр. )
Применение информационных технологий в сфере образования и обучения (исправленная работа) ( Курсовая работа, 41 стр. )
Применение информационных технологий в сфере образования и обучения ( Курсовая работа, 41 стр. )
Применение ИТ в географии туризма ( Дипломная работа, 21 стр. )
Применение ИТ в задачах мониторинга атмосферного аэрозоля ( Дипломная работа, 28 стр. )
Применение ИТ в исследованиях уравнений Навье-Стокса ( Дипломная работа, 31 стр. )
Применение ИТ в научной и практической психологии ( Дипломная работа, 30 стр. )
Применение ИТ для расчета и анализа прохождения импульсного сигнала через дифференциальный измерительный трансформатор тока (Пояс Роговского) ( Дипломная работа, 26 стр. )
Применение ИТ при использовании методов исторической лингвистики в процессе преподавания истории древнего Ирана ( Дипломная работа, 31 стр. )
Применение ИТ при исследовании вольтерровых интегральных операторов ( Дипломная работа, 28 стр. )
Применение компьютерных технологий на уроках развития речи ( Курсовая работа, 27 стр. )
Применение мобильных технологий в электронном правительстве ( Дипломная работа, 94 стр. )
Применение нейронных сетей для идентификации типа сейсмического сигнала ( Дипломная работа, 80 стр. )
Применение новейших компьютерных технологий для автоматизации процессов промышленного перевода с иностранных языков. ( Контрольная работа, 1 стр. )
Применение новейших экономико-математических методов для решения задач ( Курсовая работа, 23 стр. )
Применение развивающих игр на базе информационно-коммуникативных технологий в начальной школе12 ( Дипломная работа, 68 стр. )
Применение систем управления базами данных в правоохранительной деятельности8 ( Контрольная работа, 12 стр. )
Применение системы бикластеризации BicAT для анализа Интернет-данных ( Контрольная работа, 26 стр. )

Введение 5

1. Анализ подходов к обработке и распознаванию бинарных изображений 6

1.1. Бинарные изображения 6

1.2. Задачи обработки бинарных изображений 9

1.3. Кодирование контуров бинарных изображений 13

2. Основы построения систем распознавания изображений 20

2.1. Составляющие задачи распознавания 20

2.2. Основные задачи построения систем распознавания 29

2.3. Классификация систем распознавания 35

3. Реализация системы распознавания бинарных изображений 43

3.1. Структура системы распознавание бинарных изображений 43

3.2. Реализация алгоритма распознавания изображений латинского алфавита 45

3.3. Выбор среды программирования для реализации алгоритма распознавания 48

3.4. Составляющие программной реализации алгоритма распознавания 54

3.5. Интерфейс программной реализации системы распознавания 62

Вывод 67

Литература 68

На современном этапе развития информационных систем возникло очень важное научно-техническое направление, свя¬занное с автоматической обработкой изображений и распозна¬ванием зрительных образов. Условием успешного развития систем обработки изображений являются быстро улучшающиеся характеристики вычислитель¬ной техники и ее элементной базы, в первую очередь больших интегральных схем запоминающих устройств, микропроцессо¬ров и однокристальных ЭВМ.

Существующие датчики дают возможность получать изоб¬ражения в разных средах и различных диапазонах волн. Среди них необходимо, в первую очередь, отметить оптиче¬ские, радио- и гидролокационные датчики ИК-диапазона. По сравнению с оптическими остальные датчики формируют, в основном, изображения с худшими характеристиками: меньшей степенью детальности, большими уровнем помех и временем образования изображения и др. Однако они мо¬гут иметь и серьезные преимущества, например, большую дальность действия, проникновение через облачность, лед, вод¬ную среду. Кроме того, количество поступающей информации в единицу времени от любого из датчиков чаще всего зна¬чительно превышает возможности существующих систем обработки на базе цифровой вычислительной техники.

В большинстве случаев практически значимые результаты могут быть получены по бинарным изображениям, формиру¬емым по исходным многоградационным. При этом значи¬тельно упрощается процесс принятия решения, сокращается объем обрабатываемой информации и при современном уровне развития вычислительных средств достигается возможность работы в реальном масштабе времени.

1. Handbook of pattern recognition and computer vision / Chen C.H., Rau L.F. and Wang P.S.P.(eds.). – Singapore-New Jersey-London-Hong Kong: World Scientific Publishing Co. Pte. Ltd., 1995. - 984 p.

2. Shalkoff R.J. Digital image processing and computer vision. – New York-Chichester-Brisbane-Toronto-Singapore: John Wiley & Sons, Inc., 1989. - 489p.

3. Путятин Е.П., Аверин С.И. Обработка изображений в робототехнике. М: Машиностроение, 2000. 320 с.

4. Гиренко А.В., Ляшенко В.В., Машталир В.П., Путятин Е.П. Методы корреляционного обнаружения объектов. Харьков: АО “БизнесИнформ”, 1996. 112 с.

5. Вестник Национального Технического Университета “Харьковский политехнический институт” Выпуск 114.- Харьков: НТУ “ХПИ”, 2006. – 128с. 7. Прблемы бионики. Всеукраинский межведомственный сборник. Выпуск 50.- Харьков: “ХГТУРЭ”, 1999. – 217с.

6. M.Wooldridge and N.R.Jennings, Intelligent agents: theory and practice, The Knowledge Engineering Review, v. 10:2, 1995, 115-152

7. Кораблин М.А., Ржевский Г.А., Скобелев П.О. Мультиагентная среда для поддержки принятия решений. // ICCS 2001, Санкт Петербург, 2001

8. В.И.Городецкий, М.С.Грушинский, А.В.Хабалов, Многоагентные системы (обзор) // Новости искусственного интеллекта, 1998, N2.

9. M.Mesarovic, Systems theoretic approach to formal theory of problem solving, in Theoretical Approaches to Non-Numerical Problem Solving, R.Banerji and M.Mesarovic, Eds. New York: Springer, 1970.

10. S.Amarel, Problems of representation in heuristic problem solving: related issues in the development of expert systems, Laboratory for Computer Science Research, Rutgers Univ., Tech. Rep. CBM-TR-118, 1981.

11. Р.Б.Банерджи. Теория решения задач как раздел искусственного интеллекта. ТИИЭР, т.70, №12, декабрь 1982.

12. Д. Пойа. Математическое открытие. - М.: Наука, 1976. - 448с.

13. Ефимов Е.И. Решатели интеллектуальных задач - М.: Наука, 1982.

14. Ю.В.П.Гладун, Н.Д.Ващенко, Н.И.Галаган. Системы планирования действий для сложных сред // Кибернетика. - 1982.-№5.- с.88-94.

15. Н.Попов Э.В. Экспертные системы. М.: Наука, 1987. 284с.

16. Н.Г.Загоруйко. Методы распознавания и их применение. М., 1972.

17. В.С.Тюхтин. Теория автоматического опознавания и гносеология. «Наука», М., 1976, 190с.

Примечаний нет.

2000-2024 © Copyright «DipMaster-Shop.ru»